Glass transition in pure and doped amorphous solid water: an ultrafast microcalorimetry study.

نویسندگان

  • M Chonde
  • M Brindza
  • Vlad Sadtchenko
چکیده

Using an ultrafast scanning microcalorimetry apparatus capable of heating rates in excess of 10(5) Ks, we have conducted the first direct measurements of thermodynamic properties of pure and doped amorphous solid water (also referred to as low density amorphous ice) in the temperature range from 120 to 230 K. Ultrafast microcalorimetry experiments show that the heat capacity of pure amorphous solid water (ASW) remains indistinguishable from that of crystalline ice during rapid heating up to a temperature of 205+/-5 K where the ASW undergoes rapid crystallization. Based on these observations, we conclude that the enthalpy relaxation time in pure ASW must be greater than 10(-5) s at 205 K. We argue that this result contradicts the assignment of glass transition temperature to 135 K and that ASW may undergo fragile to strong transition at temperatures greater than 205 K. Unlike pure ASW, we observe an approximately twofold rise in heat capacity of CH3COOH doped ASW at 177+/-5 K. We discuss results of past studies taking into account possible influence of impurities and confinement on physical properties of ASW.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films

The existence of nonthermal, ultrafast phase transitions after strong femtosecond laser excitation has been demonstrated in several materials such as silicon [1–3], gallium arsenide [3–6], indium antimonide [7], and carbon [8]. It is accepted that such transitions are induced by a softening of the lattice structure due to the generation of a very high density electron-hole plasma, as first prop...

متن کامل

Enhanced luminescence of Er+3-doped Zinc-Lead-Phosphate Glass embedded SnO2 nanoparticles

Introduction of the nanoparticles in the bulk glass received a large interest due to their versatile application. The composition of Er+3-doped Zinc-Lead-Phosphate glass samples are prepared by melt-quenching technique. The structural and optical properties of phosphate glass have been examined by x-ray diffraction, fie...

متن کامل

Solid and Liquid States of Lactose

Lactose in dairy systems can exist in various crystalline and non-crystalline forms. These forms affect lactose behaviour, particularly in processing and storage of low-water dairy foods. Crystalline -lactose monohydrate and anhydrous -lactose are well-known solid forms of lactose, which are relatively poorly soluble in water. Its occurrence in two anomeric forms, and -lactose, makes its solubi...

متن کامل

Glass-liquid phase separation in highly supersaturated aqueous solutions of telaprevir.

Amorphous solid dispersions are of great current interest because they can improve the delivery of poorly water-soluble compounds. It has been recently noted that the highly supersaturated solutions generated by dissolution of some ASDs can undergo a phase transition to a colloidal, disordered, drug-rich phase when the concentration exceeds the "amorphous solubility" of the drug. The purpose of...

متن کامل

Tailoring the Energy Band Gap of Transition Metal Doped TiO2 Thin Film

Water splitting for hydrogen production under sunlight using TiO2 as photo catalyst provides a better route for solar energy and attracts the attention of many researchers. The photo catalytic activity of TiO2 under sunlight irradiation depends on the band gap energy. The transition metal doped TiO2 shows an edge over TiO2 in optical absorbance and photo catalytic activity. Thin film of Cr dope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 125 9  شماره 

صفحات  -

تاریخ انتشار 2006